152 research outputs found

    Experimental Validation of Contact Dynamics for In-Hand Manipulation

    Full text link
    This paper evaluates state-of-the-art contact models at predicting the motions and forces involved in simple in-hand robotic manipulations. In particular it focuses on three primitive actions --linear sliding, pivoting, and rolling-- that involve contacts between a gripper, a rigid object, and their environment. The evaluation is done through thousands of controlled experiments designed to capture the motion of object and gripper, and all contact forces and torques at 250Hz. We demonstrate that a contact modeling approach based on Coulomb's friction law and maximum energy principle is effective at reasoning about interaction to first order, but limited for making accurate predictions. We attribute the major limitations to 1) the non-uniqueness of force resolution inherent to grasps with multiple hard contacts of complex geometries, 2) unmodeled dynamics due to contact compliance, and 3) unmodeled geometries dueto manufacturing defects.Comment: International Symposium on Experimental Robotics, ISER 2016, Tokyo, Japa

    Structural compliance effects on the accuracy and safety of a R-CUBE haptic device

    Get PDF
    28th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2019; Kaiserslautern; Germany; 19 June 2019 through 21 June 2019This paper addresses the contribution of structural compliance on stiffness and safety of a R-CUBE Haptic Device. Structural compliance is determined in several poses via FEM analysis and addressed by referring to local and global indices of performance. Results are also compared with evidences from experimental tests. Comparison of numerical and experimental data allows to identify and separate the contributions to the overall compliance that are due to the structural stiffness, and other contributions such as joint clearance, pose and loading conditions.Axis IT and T (20/01.09.2016), European Regional Development Fun

    Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å.

    Get PDF
    Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Å resolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αβ heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Will ocean acidification affect marine microbes?

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1-7, doi:10.1038/ismej.2010.79.The pH of the surface ocean is changing as a result of increases in atmospheric carbon dioxide (CO2) and there are concerns about potential impacts of lower pH and associated alterations in seawater carbonate chemistry on the biogeochemical processes in the ocean. However, it is important to place these changes within the context of pH in the present day ocean, which is not constant; it varies systematically with season, depth and along productivity gradients. Yet this natural variability in pH has rarely been considered in assessments of the effect of ocean acidification on marine microbes. Surface pH can change as a consequence of microbial utilisation and production of carbon dioxide, and to a lesser extent other microbiallymediated processes such as nitrification. Useful comparisons can be made with microbes in other aquatic environments that readily accommodate very large and rapid pH change. For example, in many freshwater lakes, pH changes that are orders of magnitude greater than those projected for the 22nd century oceans can occur over periods of hours. Marine and freshwater assemblages have always experienced variable pH conditions. Therefore, an appropriate null hypothesis may be, until evidence is obtained to the contrary, that major biogeochemical processes in the oceans other than calcification will not be fundamentally different under future higher CO2 / lower pH conditions.Funding from the Gordon and Betty Moore Foundation, and logistical support from the Plymouth Marine Laboratory and the Center for Microbial Oceanography: Research and Education (National Science Foundation grant EF-0424599) are gratefully acknowledged

    Differentiation of Schizophrenia Patients from Healthy Subjects by Mismatch Negativity and Neuropsychological Tests

    Get PDF
    BACKGROUND: Schizophrenia is a heterogeneous disorder with diverse presentations. The current and the proposed DSM-V diagnostic system remains phenomenologically based, despite the fact that several neurobiological and neuropsychological markers have been identified. A multivariate approach has better diagnostic utility than a single marker method. In this study, the mismatch negativity (MMN) deficit of schizophrenia was first replicated in a Han Chinese population, and then the MMN was combined with several neuropsychological measurements to differentiate schizophrenia patients from healthy subjects. METHODOLOGY/PRINCIPAL FINDINGS: 120 schizophrenia patients and 76 healthy controls were recruited. Each subject received examinations for duration MMN, Continuous Performance Test, Wisconsin Card Sorting Test, and Wechsler Adult Intelligence Scale Third Edition (WAIS-III). The MMN was compared between cases and controls, and important covariates were investigated. Schizophrenia patients had significantly reduced MMN amplitudes, and MMN decreased with increasing age in both patient and control groups. None of the neuropsychological indices correlated with MMN. Predictive multivariate logistic regression models using the MMN and neuropsychological measurements as predictors were developed. Four predictors, including MMN at electrode FCz and three scores from the WAIS-III (Arithmetic, Block Design, and Performance IQ) were retained in the final predictive model. The model performed well in differentiating patients from healthy subjects (percentage of concordant pairs: 90.5%). CONCLUSIONS/SIGNIFICANCE: MMN deficits were found in Han Chinese schizophrenia patients. The multivariate approach combining biomarkers from different modalities such as electrophysiology and neuropsychology had a better diagnostic utility

    Manipulation planning under changing external forces

    Get PDF
    This paper presents a planner that enables robots to manipulate objects under changing external forces. Particularly, we focus on the scenario where a human applies a sequence of forceful operations, e.g. cutting and drilling, on an object that is held by a robot. The planner produces an efficient manipulation plan by choosing stable grasps on the object, by intelligently deciding when the robot should change its grasp on the object as the external forces change, and by choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. Furthermore, as it switches from one grasp to the other, the planner solves the bimanual regrasping in the air by using an alternating sequence of bimanual and unimanual grasps. We also present a conic formulation to address force uncertainties inherent in human-applied external forces, using which the planner can robustly assess the stability of a grasp configuration without sacrificing planning efficiency. We provide a planner implementation on a dual-arm robot and present a variety of simulated and real human-robot experiments to show the performance of our planner

    A method to determine spatial access to specialized palliative care services using GIS

    Get PDF
    Background: Providing palliative care is a growing priority for health service administratorsworldwide as the populations of many nations continue to age rapidly. In many countries, palliativecare services are presently inadequate and this problem will be exacerbated in the coming years.The provision of palliative care, moreover, has been piecemeal in many jurisdictions and there islittle distinction made at present between levels of service provision. There is a pressing need todetermine which populations do not enjoy access to specialized palliative care services in particular.Methods: Catchments around existing specialized palliative care services in the Canadian provinceof British Columbia were calculated based on real road travel time. Census block face populationcounts were linked to postal codes associated with road segments in order to determine thepercentage of the total population more than one hour road travel time from specialized palliativecare.Results: Whilst 81% of the province\u27s population resides within one hour from at least onespecialized palliative care service, spatial access varies greatly by regional health authority. Based onthe definition of specialized palliative care adopted for the study, the Northern Health Authorityhas, for instance, just two such service locations, and well over half of its population do not havereasonable spatial access to such care.Conclusion: Strategic location analysis methods must be developed and used to accurately locatefuture palliative services in order to provide spatial access to the greatest number of people, andto ensure that limited health resources are allocated wisely. Improved spatial access has thepotential to reduce travel-times for patients, for palliative care workers making home visits, and fortravelling practitioners. These methods are particularly useful for health service planners – andprovide a means to rationalize their decision-making. Moreover, they are extendable to a numberof health service allocation problems
    corecore